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1 Introduction
This report covers the programming assignment from the "Network Embedded Programming" class at DIKU,
blok 3 2006-2007. The report consists of the following sections: Part 1: SPI driver that covers the developed SPI
driver, Part 2: Publish/Subscribe which discusses the publish/subscribe system and the developed components,
Part 3: Testing framework that presents our testing framework and the test results, and finally a small concluding
remark in the Conclusion. In the appendix we have included the output from the various tests done in appendix
A.

The code, the binary .s19 files and the report can be found online at http://jonas.nitro.dk/nep/.
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2 Part 1: SPI driver
The first part of the assignment is to write an SPI driver for the HCS08 chip. This part will briefly describe SPI
and how it is used on the HCS08 chip and provide a walk-through of the driver code. The driver is located in
tos/chips/hcs08/HPLSPIM.nc and is based on the stub provided in the assignment framework.

SPI is a very general protocol that chips can use to communicate with peripherals. It allows several slave
devices to be connected to one master. In our case only one device is connected to the chip through the SPI
interface, i.e. the radio. As we shall see later, this makes initializing SPI simpler.

SPI generally uses 4 pins. There is no definitive specification of how the pins must be used, which allows it
to be adapted to the specific hardware needs. The SPI on the HCS08 chip uses the following assignment of pins:
Two (MOSI and MISO) are used for data transfers one bit at a time, with one pin handling input and the other
handling output. Another pin is devoted to timing and allows the master to send a clock pulse. The last pin,
called chip enable or slave select, is used for addressing which device to communicate with by setting it high
when transmitting.

There exist two SPI interfaces for TinyOS: ByteSPI and FastSPI. The first interface is intended for slow SPI
transmissions and thus uses non-blocking requests via split-phase operations to improve concurrency. The Fast-
SPI interface is intended for SPI devices running with a fast transfer rate and where the implied “blocking” (or
waiting for the hardware) is an acceptable trade off for increased speed by avoiding an extra function call. Addi-
tionally, the FastSPI interface reduces complexity in the state machine and is more straightforward to use since
it closer resembles the transfer mode of SPI.

The registers involved with the setup and use of the SPI hardware is described in Table 1.

Registers in use
SPIC1 Primary control register, consists of the SPIE, SPE, SPTIE, MSTR, CPOL, CPHA, SSOE and LSBFE bits
SPIC2 Secondary control register, consists of the MODFEN, SPC0, BIDIROE and SPISWAI bits
SPIBR Baud rate control register, contains 3 SPPR and 3 SPR bits: the baud rate divisors
SPIS Status register, contains the SPTEF, SPRF and MODF bits
SPID Data register, writes write to the transmit data buffer and reads read from the receive data buffer
PTED Port E data
PTEDD Port E data direction, sets whether port E pins are output (1) or input (0)
PTEPE Port E pull-up enable, decides for input whether pull-up is enabled (1) or disabled (0)

Table 1: SPI registers. Description of the SPI registers.

2.1 Initialization
Both driver initialization and shutdown is handled via the StdControl interface provided by the SPI driver.
The interface requires the driver to implement an init and start command. Since there is no static state to preserve
across resets and no sub-components that need to be initialized there is no need for an StdControl.init. The
main driver initialization can therefore be deferred to the start command. Unfortunately, nesC does not ensure
the order in which the StdControl.start functions are called. This can cause problems when “starting” the
radio with SPI not yet configured. To solve this, we have decided to configure the SPI hardware in a separate
function called initSPI and call it from both StdControl.start and StdControl.init.

The purpose of the initialization is to enable the SPI hardware in a configuration that matches the way it will
be used. The code to initialize the SPI to match the nodes in the testbed and program is presented below.

37 void i n i t S P I ( )
{

SPIC1 = 0x50 ; /∗ Enab l e SPI master , s e t t iming edge . ∗ /
SPIC2 = 0x00 ; /∗ S e t t o t h e d e f a u l t s . ∗ /
SPIBR = 0x00 ; /∗ S e t t o h i g h e s t b a u d r a t e . ∗ /

42 }

In the following we will describe the various register and bit settings. The flags and settings presented below
can be found described in [5] in Cchapters 12.3.1 and 12.4.1 unless otherwise specified and a description of the
flags can be found in Table 2. The table shows name, value, and a small description.

To enable SPI we need to set SPE=1 and we set MSTR=1 since we want the MCU to be master. Furthermore,
we need to set CHPA=0 and leave CPOL at default to ensure the timing of the MCU and the radio is synchronized.
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Bits left as default.
Bit value Description
SPIE 0 Disables interrupts flagged via SPRF and MODF

SPTIE 0 Disables interrupts flagged via SPTEF
CPOL 0 SPI clock active high and idle low
LSBFE 0 Serial data transfers start with most significant bit
SSOE 0 SS pin functions as general-purpose I/O
MODFEN 0 Master mode-fault function disabled
SPCO 0 Use separate pins for data input and data output
BIDIROE 0 Bidirectional mode output, has no effect when SPC0=0

SPISWAI 0 Clock continues to operate in MCU wait mode
SPPR 0 Baud rate prescaler divisor
SPR 0 Baud rate divisor
Bits changed.
Bit value Description
SPE 1 Enable SPI; makes the MCU allocate the four port E pins
MSTR 1 Sets this device to be a master (MCU)
CPHA 0 First edge on SPSCK occurs at the middle of the first cycle of an 8-cycle transfer

Table 2: SPI flags Description of the used values for the SPI flags.

This way, the first edge of the SPSCK occurs at the middle of the first cycle of an 8-clock data transfer. Leaving
SPIE = 0 and SPTIE=0 disables interrupts and lets us handle the SPI buffers by polling. Setting LSBFE=0
make SPI data transfers start with most significant bit first. All of the above settings can be achieved by setting
the SPIC1 register to 0x50.

The SPIC2 register can be left as default, see [5] Chapter 12.4.2 for more information. This means that SPI
uses separate pins for input and output, due to SPC0=0, which again leaves BIDIROE=0 to be ignored. Since we
have disabled interrupts and since we are only communicating with one peripheral, we can leave the mode fault
function disabled, i.e. MODFEN=0, which leaves SPIC1’s SSOE=0 without influence. Together with MSTR=1,
MODFEN=0 ensures that SPI disregards the SS pin. Finally, leaving SPIC2 as default sets SPIWAI=0 which
leaves the SPI clock operating when the MCU is in wait mode. This seems reasonable since we are not using the
MCU power states, however this would be a possible optimization for improving energy consumption.

Since we need the radio to function at full capacity we can leave the SPIBR register as default forcing the
highest possible baud rate.

Enabling the SPI will ignore the setting of the PTEDD register for the pins we are going to use, see[5] page
90. Furthermore, it defines what the PTED register is used for, making PTE2=SS, PTE3=MISO, PTE4=MOSI and
PTE5=SPSCK. Since no internal pull-up device for the pins is needed, we can leave PTEPE as default, see [5]
page 91.

2.2 Shutdown
The StdControl interface also requires a stop command to be implemented that allows for shutting down
access to the device. StdControl.stop can be seen below.

command r e s u l t _ t StdControl . s top ( )
{

62 SPIC1 = 0x00 ;
return SUCCESS;

}

The stop command simply disables the SPI device by setting the SPIC1 register to zero whereby specifically
the SPE flag will be cleared.
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2.3 Transmission
The other main part of the driver is the transmit/receive command, txByte. As argument the command takes
a byte to transmit to the radio and returns a byte received from the radio. It is displayed below.

75 async command uint8_t SPI . txByte ( uint8_t data )
{

uint8_t temp_value ;

/∗ Wait f o r t h e t r a n s m i t b u f f e r empty f l a g t o c l e a r ∗ /
80 while ( ! SPIS_SPTEF )

;

/∗ Write d a t a t o t h e t r a n s m i t b u f f e r . ∗ /
SPID = data ;

85

/∗ Wait f o r t h e r e c e i v e b u f f e r f l a g t o c l e a r . ∗ /
while ( ! SPIS_SPRF )

;

90 /∗ C l e a r t h e s t a t u s r e g i s t e r ∗ /
temp_value = SPIS ;

/∗ Read t h e d a t a from t h e r a d i o and r e t u r n i t . ∗ /
return SPID ;

95 }

The txByte command will wait for a buffer using a busy loop checking the transmit buffer empty flag
SPTEF in the SPIS register. When the flag has been cleared it will write the data into the transmit buffer via
the SPID register. Then it will wait for the receive buffer to become full as indicated by the SPRF flag. This is
done by using a busy loop to check that the the flag is set before continuing. Finally, the SPIS status register is
cleared and the data from the radio is read from the SPID register and returned. By reading the SPIS registers
while SPTEF is set and then reading from the SPID, we cleanup the SPIS register and a new transmission can
begin. Alternatively, the cleanup code could be moved to the start making each transmission clean up before
communicating. We have chosen that each transmission cleans up before exiting, because this will enable us to
catch bugs caused by concurrent access since the second instance entering txByte will be caught in the SPTEF
loop forever.

An alternative to simply doing a while loop would be to measure how long the SPI transmission takes. We
could then insert an amount of NOP instructions that take the same amount of cycles to complete, eliminating
the need for busy waiting. However since we can not accurately measure the time ourselves, we have chosen
not to do this.

Depending on whether the driver is going to be used by several components which can access the device
concurrently locking may be an issue. This could especially be a problem if several components in the application
needs access to the SPI module e.g. if the SPI device was connected to several slave devices. However, since only
the radio is wired to the SPI, we assume that only one component will access the SPI device, or that access by
multiple components is handled at a higher level. We are aware of the fact that the radio has two components that
access SPI, but we assume that the radio handles any concurrency issues internally. Additionally, introducing
locking in the FastSPI driver would compromise the emphasis on fast transfers.
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3 Part 2: Publish/subscribe

3.1 Requirements
Publish/subscribe is a system for matching network nodes (called sinks) that want information with nodes
(called sources) that provide it. Sinks subscribe to data of some type, while sources publish data. The challenge
is to match subscriptions and publishing of the same type together. Since this happens in a sensor network with
changing topology and energy levels, there are some additional challenges from the extra constraints this adds.

3.1.1 Interest matching
Since nodes can be added or disappear at any time, the sensor network has no overall knowledge of its own
topology. This makes matching sources and sinks with the same interest a non-trivial problem. In addition, a
topology change might require a re-matching to be done. It is of course possible to flood the network with every
message from sources and sinks, but this is very expensive and best avoided as much as possible.

Therefore we need to design a system that can handle matching of interests based on limited local informa-
tion.

3.1.2 Types of interests
There are several ways to define the interests nodes subscribe to or publish. Sensor data can be generated by
the different kinds of sensors with which the network nodes are equipped. It can also be sampled in different
intervals and for different lengths of time. If the sensor nodes can determine their own position, it can include
geographical information, e.g. subscribing to sensor information from nodes located in a specific area.

Another option is allowing sinks to subscribe to more abstract data events and not simply specify data read-
ings, e.g. “send me a message when the pig oinks” instead of “send me a message with the microphone data
every second”. Higher level descriptions allow forwarding nodes more options in dealing with the message,
such as data aggregation and in-network processing. E.g. averaging data from multiple sources and combining
them into one message before it reaches the sink, instead of averaging all the received messages at the sink. This
reduces the amount of communication needed.

Therefore we need a robust way of describing the different kinds of interests that can be published/sub-
scribed.

3.1.3 Power
Sensor networks have the unique problem of power supply. Nodes deployed in the field often have no access to
external power, and must rely on batteries that are difficult or impossible to replace when they run low. Therefore
a low power consumption is essential for ensuring the longevity of the network. Part of this lies in hardware
design and overall node operations like doing duty cycling[7], where a node is asleep in low-power mode most
of the time, only waking up into high-power mode when needing to communicate or use the sensor. However it
has to be considered in application and algorithm design as well. For example, a node that is the theoretical best
pick for shortest path routing, might also be very low on power. It is therefore better to avoid routing through
it, thus making it able to remain active for as long as possible.

Therefore we need to consider energy-awareness in our design.

3.1.4 Routing
As described earlier, the sensor network has no overall routing information available. But we still need to be able
to send messages between nodes that cannot communicate directly. Duty cycling on the nodes (where they have
their radios turned off most of the time to conserve power) may impose additional restrictions on the routing,
due to nodes not having their radios turned on all the time. With the network not being static, it is also necessary
to discover when new nodes have been added, or known nodes disappear.

Therefore we need a routing system that works with limited knowledge and is topology indifferent.
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3.2 Design

3.2.1 Routing
We have chosen to base our publish/subscribe design on directed diffusion. Directed diffusion is a data-centric
routing system for sensor networks. Our design is a limited version of the one described in [7] and [1].

When a node wishes to subscribe to a particular interest, it has two choices. Either it has received data of
this type before and can send its interest back along this path to the node the data came from. Or it has no idea
where to find a source, and so it broadcasts its interest to all nodes within radio range. We call the kind of path
that has been established from seeing previous messages a gradient.

Nodes that receive interests make the same choice of either forwarding along a gradient to a known node
that provided data for that interest, or broadcasting if there are no known gradients. To avoid the same message
bouncing back and forth, nodes ignore subsequent identical messages. An identical message is one that has
already been received, which then due to the delay in travelling a longer path, is received again from another
node. The same message received from the same node is not considered identical, as this may simply be two
data readings that are the same.

Figure 1: Initial subscription

In Figure 1, the sink marked with a box subscribes to data published by the source marked with an X. Dashed
arrows are duplicate messages that are ignored. Grey arrows are gradients, cached interests that will result in
data being sent this way. The extra gradients will never have data sent along them, and so will have no effect
unless the topology changes.

Note how the gradients in Figure 2 from the two nodes on the top right will not be used in the current
situation. But they exist in the eventuality that the network topology changes and they might be needed, instead
of having to start from scratch with new gradients.

Once the interest reaches a node that is a source for this kind of data, it starts taking sensor measurements
and sending data back. Data is sent to the first node the interest was heard from, which should be the one closest
to the sink due to transmission times. This is illustrated in figure 3. When a node receives data, it sends it
onwards to the first node from which it heard an interest for that kind of data. Consequently, the shortest path
between source and sink will be picked.

If a node that is on the gradient path between a source and sink disappears, it will no longer be possible to
route messages this way. To detect that this has happened, a node that sends a message to another node (but not
broadcasting), also starts listening if that node forwards the message. If it does not do so within a reasonable
airframe, it has probably disappeared, and we need to find a new path. This is then done by broadcasting, so that
another node with gradients will hopefully be found nearby. Otherwise an entirely new path will be created.
Unfortunatey this was one of the enhancements we did not have time to implement and test.

6



Figure 2: Here a set of gradients already exists, so the new sink uses those as well.

This system of diffusing interests and data makes it possible for sources and sinks to communicate effectively,
even when the overall network topology is unknown.

Figure 3: The source sends data back to the sink.

3.2.2 Messages
Our application will need a common message format for communication between nodes. We have chosen to use
the existing TOS_Msg structure and add the extra fields we need to the data section. This lets us use the existing
TOS_Msg-based interfaces, without the possible errors of trying to cast our own format into them.

Message structure:

Address Type Group Length Data: CRC
Sender Hops Orig sender Descriptor Sensor data

Address 16-bit
The node address of the destination, or a special value for broadcasting. There will often be several nodes
in communication range, but some messages are only relevant for one particular node. This allows the
other nodes to ignore messages not relevant for them.

Type 8-bit
The type of the message, this can be either data or interest. Interest messages originate from sinks that
want to subscribe to data, while data messages originate from sources sending data.

Group 8-bit
Magic number to distinguish our nodes from those used by other students. The DIKU Testbed allows
several project groups to work with the nodes at the same time. A unique number that identifies our
messages will allow us to ignore messages generated by other applications, which might otherwise con-
fuse ours. We picked the number 0x34.

Length 8-bit
How many bytes of the data block are being used, this will depend on the size of the sensor data.
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Data Split into:

Sender 16-bit
The node address of the sender. It is necessary to know which node sent a message for setting up
gradients.

Hops 8-bit
Number of transmission hops the packet has taken, to aid in testing.

Original sender 16-bit
The node address of the original sender, to distinguish between multiple sinks or sources for the
same data descriptor.

Data descriptor 8-bit
The data descriptor this message is an interest or data for.

Sensor data Variable
Either empty or the sensor measurement, depending on message type. The size of this field is
determined by the type of sensor measurement it is from. The length can be calculated from the
Length field above, taking into account that the previous fields are 6 bytes long..

CRC 16-bit
Checksum to detect corrupt packets. We do not use this in our application.

This format covers all the different kinds of messages our nodes will need to exchange.

3.2.3 Publish/subscribe
The data that nodes can subscribe and publish can be specified in many ways. There are constraints on the sensor
node itself, such as geographical position, remaining power, or sensor type (temperature, light, etc.). There is
also the frequency and number of measurements. The sensor node specification can either be dynamic in almost
a kind of query specification where nodes need to be able to determine which of the criteria they fulfil. It can
also be determined beforehand with sources programmed to respond to a series of data descriptors.

For our application we settled on a simple approach of specifying a list of data descriptors beforehand. The
nodes can then decode these to their matching sensor, sample and period values.

We have decided to keep the publish/subscribe module interface provided with the assignment. However,
due to the subscription-driven way our directed diffusion design works, we have not implemented it fully. The
explicit publishing and unsubscription command are not needed, when we automatically publish information
that a node receives an interest for, and have these subscriptions timeout.

3.2.4 Other considerations
Our system is a little different from the directed diffusion described in [7] and [1]. We use previous data and
interest messages as implied gradients and only use these two kinds of messages. This approach is simpler and
thus easier to implement at first and then iteratively refine. However, we still believe that it fulfills the goal of
directed diffusion with being data-centered and not needing any global routing information.

In this design the transfer of data is entirely controlled by the sinks pulling in data by sending out interests.
Another possibility would be to allow sources to actively publish data, even without having heard any interests
for it. This changes the focus of the system from retrieving data to instead disseminating or distributing data
that might be used where it is overheard. Another way of thinking about this, is whether the system is push or
pull centered. We feel that the first approach is a better fit for the kind of system we are designing.

There are different approaches to how subscriptions stop. One is an explicit unsubscription message which
will tear down the gradients pointing towards that sink, and eventually make the source stop sending more data.
We have chosen instead to have all subscriptions contain an implicit timeout encoded in the data descriptor as
the number of data samples desired. If the sink wants more data, it can send a new interest. This both mimics
a kind of reinforcement and solves the problem of a source continuously sending data with no idea whether the
sink that wanted it is still alive.

Energy awareness in our application is another issue to consider. Our nodes should take into account energy
levels as part of the decisions they take. The easiest approach is for nodes low on energy to ignore messages
they ought to have forwarded. This effectively makes them drop out of the network most of the time, which the
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normal directed diffusion system then handles. We have decided not to implement this, since the motes in the
DIKU Testbed are not battery powered.

A possible enhancement to the system is to allow for multiple sinks and sources. To distinguish between in-
terests from two different sinks or data from two different sources, they need some sort of unique identifier. This
allows a receiver to determine if a message is simply a delayed duplicate, or from a different node. The unique
address assigned to nodes in the DIKU Testbed environment is an obvious choice for this. In a setting with no
predefined globally unique names, an alternative would be for nodes to pick a random name for themselves on
startup.

Other possible enhancements as described in [1] are exploratory messages for setting up the initial gradients
and reinforcement messages for maintaining them. This separates the setup of gradients from the actual data
transmitted along them, making the system more flexible.

3.3 Implementation
To make publish/subscribe work in a sensor network, we have implemented a directed diffusion system. This
system is assembled from several TinyOS modules. It would have been possible to implement the application
as one large module, which would have saved time and reduced complexity in creating interfaces between
the modules. However the downside of it being much less modular and much harder to test makes the first
approach better. The modules we have created will be described below.

3.3.1 Cache
We need to be able to store messages received from other nodes. To do this we created a CacheM module. It
stores received messages, enabling us to detect duplicates and check for previous messages. The interface allows
for the storage of messages, for checking if a given message already exists in the cache, and for retrieving the
gradients these messages represent.

The cache itself consists of an array of messages, with the number of times they have been stored attached.
This can obviously be implemented more efficiently with e.g. a tree structure, but this is good enough for our
purpose. The modular structure of the program makes a later change easy to implement.

If a program attempts to store too many messages in the cache, previous messages are overwritten, starting
with those that have been received the fewest amount of times. The storage of messages can be seen in the
following code snippet.

command r e s u l t _ t Cache . storeMsg ( TOS_MsgPtr msg)
{

cacheEntry ∗ currEntry ;

83 / / t h e p o s i t i o n in t h e c a c h e t o be o v e r w r i t t e n
uint8_t overwritePos = 0 ;
uint8_t overwri teS tores = ( uint8_t ) −1;

uint8_t i ;
88

/ / t o make s u r e we don ’ t o v e r w r i t e t h e same p o s i t i o n e v e r y
t ime ,

/ / r o t a t e t h e s t a r t i n g e l e m e n t
r o t a t e = ( r o t a t e + 1) % CACHE_SIZE ;

93 for ( i = 0 ; i < CACHE_SIZE ; i ++)
{

currEntry = &cache [ ( i + r o t a t e ) % CACHE_SIZE ] ;

/ / i s t h e message we want t o s t o r e in t h e c a c h e
a l r e a d y ?

98 i f ( cache [ i ] . s t o r e s > 0 &&
msgEqual(& currEntry−>msg , msg) )

{
currEntry−>s t o r e s ++;
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return SUCCESS;
103 }

/ / s i n c e we ’ r e c h e c k i n g t h e c a c h e anyway , a l s o l o o k
f o r an e n t r y t o

/ / o v e r w r i t e
/ / i f t h e c u r r e n t c a c h e e n t r y has been s t o r e d l e s s

than t h e one we
108 / / want t o o v e r w r i t e , o v e r w r i t e i t i n s t e a d .

i f ( currEntry−>s t o r e s < overwri teS tores )
{

overwritePos = ( i + r o t a t e ) % CACHE_SIZE ;
overwri teS tores = currEntry−>s t o r e s ;

113 }
}

memcpy(&cache [ overwritePos ] . msg , msg , s izeof (TOS_Msg) ) ;
cache [ overwritePos ] . s t o r e s = 1 ;

118

return SUCCESS;
}

3.3.2 ConstantSensor
The motes on the DIKU Testbed have not yet been equipped with sensors. But we need sensor data to publish
and subscribe to. To provide this we have created a dummy sensor module called ConstantSensorM, that
returns a constant value instead of reading from a real sensor attached to the node. It implements the ADC
interface for requesting and receiving data like a real sensor would.

task void returnData ( )
{

/ / Return a c o n s t a n t v a l u e f o r e v e r y s e n s o r measurement
s ignal ADC. dataReady ( 1 ) ;

18 }

3.3.3 Sensor
In our application, nodes will very often want to subscribe to periodic sensor readings. To make this easier to
work with, we have created a sensor module called SensorM that encapsulates the timer needed to manage this.
The interface allows for the request of a certain data descriptor. When returning data, it is delivered in a format
compatible with the PublishSubscribe interface. This makes the code in the main module clearer and more
concise.

3.3.4 NodeConfig
Our nodes need to know which kinds of sensors they are equipped with, and which tasks they have to perform.
To do this, we have created the NodeConfigM module. Its interface allows a node to look up if it is a source
or sink for a particular data descriptor. If we were using nodes equipped with real sensors, the modular nature
of this would allow it to be replaced with a new version that actually detects if the sensor hardware is present.
An additional benefit of this module is the ability to configure which nodes are within communication range.
When testing, this can be used to simulate the network topology more accurately, since we do not have access to
physically move the motes in the DIKU Testbed around.

3.3.5 NodeList
We need to remember which nodes we have heard from recently, so we know if we can communicate with them.
To maintain this list we created the NodeListM module. Its interface allows for the addition of a node we have
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received a message from, and checking if a node is in the list. When a node is added to the list, the current
timestamp is added as well. This enables us to detect nodes that we have not heard from in a long time (which
probably means that they have disappeared), and not report those as existing.

3.3.6 Timestamp
In order to be able to use timestamps in the NodeListM module, we have created a TimestampM module.
Timestamps are specified with a precision of one second, since we do not need more for communications pur-
poses. The interface allows for the current timestamp to be read, as well as comparing the time elapsed between
two timestamps.

command uint16_t Timestamp . d i f f ( uint16_t a , uint16_t b )
42 {

uint16_t d i f f ;

/ / We have wrapping .
i f ( a > b ) {

47 d i f f = b + 1 + ( ( ( uint16_t ) −1) − a ) ;
} else {

d i f f = b − a ;
}

52 return d i f f ;
}

Here we make sure that comparing timestamps works even if the time counter has wrapped around.

3.3.7 DirectD
To tie all these other modules together and implement our directed diffusion logic, we created the DirectDM
module. It implements the PublishSubscribe interface provided with the assignment. By relying on the
previously constructed modules, our design can be coded cleanly and readably. An overview of the state ma-
chine used by the module is given in the state graph in Figure 4. The states in the upper left and right corner
correspond to the subscribe command and data received event in the PublishSubscribe interface. States in
the lower half of the graph correspond to the handling of interest and data messages.

The most important part of the module is the following message routing code.

event TOS_MsgPtr Receive . r e c e i v e ( TOS_MsgPtr msg)
140 {

uint8_t dataDescr iptor ;
directd_msg_t ∗ d i r e c t d ;

/ / I g n o r e i f t h i s message i s no t from our a p p l i c a t i o n
145 / / group or a d d r e s s e d t o t h i s node .

i f (msg−>group != DIRECTD_GROUP ||
(msg−>addr != TOS_LOCAL_ADDRESS &&
msg−>addr != TOS_BCAST_ADDR) )

return msg ;
150

d i r e c t d = ( directd_msg_t ∗ ) msg−>data ;

/ / To a i d in t e s t i n g , we make i t so t h a t some nodes can ’ t
/ / s e e e a c h o t h e r , even though t h e y ’ r e in communicat ion

155 / / r ange
i f ( c a l l NodeConfig . isNeighbor ( di rec td−>sender ) == FALSE) {

LOG_INFO0( " message ignored " ) ;
return msg ;

}
160
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c a l l NodeList . addNode ( direc td−>sender ) ;

/ / Dont f o r w a r d d a t a r e c i e v e d i f i t s o r i g i n a l l y from you
i f ( d i rec td−>origSender == TOS_LOCAL_ADDRESS ) {

165 LOG_INFO0( " message not forwarded " ) ;
return msg ;

}

/ / I g n o r e i f t h e message i s in t h e c a c h e a l r e a d y
170 i f ( c a l l Cache . checkMsg (msg) )

return msg ;

/ / Add t h e message t o t h e c a c h e
c a l l Cache . storeMsg (msg) ;

175

dataDescr iptor = direc td−>dataDescr iptor ;

i f (msg−>type == DIRECTD_INTEREST ) {
/ / Are we a s o u r c e f o r t h i s i n t e r e s t

180 i f ( c a l l NodeConfig . i sSource ( dataDescr iptor ) ) {
LOG_INFO1( " S t a r t i n g sensor f o r %u" ,

dataDescr iptor ) ;

/ / S t a r t t h e s e n s o r with t h e r e q u e s t e d
/ / d e s c r i p t o r

185 c a l l Sensor . s t a r t P e r i o d i c ( dataDescr iptor ) ;
} else {

LOG_INFO0( " forwarding i n t e r e s t " ) ;
/ / Forward i t i n s t e a d
/ / B r o a d c a s t i f nowhere s p e c i f i c t o send t o

190 memcpy(&forwardMsgBuffer , msg , s izeof (∗msg) ) ;
post forwardMsg ( ) ;

}

} else i f (msg−>type == DIRECTD_DATA) {
195 / / Are we a s i n k f o r t h i s d a t a t y p e

i f ( c a l l NodeConfig . i s S i n k ( dataDescr iptor ) ) {
s ignal PS . dataReceived ( direc td−>data ,

msg−>length −

DIRECTD_HEAD_SIZE ,
dataDescr iptor ) ;

200 } else {
LOG_INFO0( " forwarding data " ) ;
/ / Forward i t i n s t e a d
/ / Do n o t h i n g i f nowhere s p e c i f i c t o send t o
memcpy(&forwardMsgBuffer , msg , s izeof (∗msg) ) ;

205 post forwardMsg ( ) ;
}

} else {
LOG_ERROR0( "Unknown DirectD message type " ) ;

210 }

return msg ;
}
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Figure 4: The DirectDM state graph. The main state is indicated by a bold circle. Dotted arrows shows related
state transitions, e.g. sending an interest will result in data delivery.

To simplify the use of our directed diffusion implementation in applications we have created the DirectDC
configuration component. Its component graph is depicted in Figure 5. DirectDC wires our modules together,
as well as components for the radio. This means that our application is intended to run as the sole program on a
mote, not as a service for another program. An impression of how an application might use the component can
be seen in Figure 9 on page 27.
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4 Part 3: Testing framework
A small test framework and test suite has been created to help testing the developed components. In the follow-
ing some general thoughts and considerations on testing will be presented. These will be further discussed in
the context of the development environment used for the assignment, i.e. TinyOS/nesC and the DIKU Testbed.
Finally a description of the test framework together with other debug tools developed for this assignment will
be presented and an overview of the test suite and test results will be given.

4.1 Test-driven development
Testing can be a tedious task, which is probably why many programmers have very mixed feelings about testing.
Most have experienced the unforgiving task of having to test a system trying to ensure that the feature that was
just added didn’t break any existing functionality. You quickly arrive at the conclusion that it is hard to ensure
that any kind of testing will rigorously test the complete system. Testing ends up becoming an overwhelming
task at best and pointless at worst.

The solution is to use test-driven development and develop the test framework in parallel with the code[6].
By gradually creating and expanding a test suite the cost of testing is amortized over the entire development
process. More important, most of the testing is done at a stage where bug fixing is easy and cheap. Addition-
ally, having a test suite makes the code more agile; allowing regular refactoring and even big changes late in
the development process because the test suite will help to quickly identify issues[3]. This is crucial for em-
bedded systems since they are often long-lived and may need major upgrades, e.g. if a chip or other hardware
component has gone out of production. Finally, because regressions are discovered much faster, testing gives
confidence to developers, which is invaluable especially late in the development process when things get hectic.

While the many advantages of test-driven development are hard to deny, there are different considerations
to make. While testing embedded system resembles normal testing practices, issues important in the domain
of embedded systems affects testing. The most important of these issues are limited resources and timing
constraints[4]. Simulating the intended workload can be very hard and it may therefore be necessary to ac-
cept that no test framework can fully test certain parts of the code. Another important consideration regarding
the test framework is to make clear what approach to testing integrates best with the development environment,
which is the topic of the following section.

4.2 Automated tests and the DIKU Testbed
The main goal of the test framework is to make it trivial to test key components. By making it easy to test, code
regressions can be discovered almost immediately, which will make it easier to pin-point the change responsible
for introducing the regression. A big part of making testing easy is to automate it. This is the approach used in
the TinyOS regression testing framework[2], where a series of scripts running on a PC will program two motes
with various applications and capture the messages they send and verify them.

Unfortunately, the Re-Mote client for the DIKU Testbed does not support automated access to the motes,
neither to program them nor to grab output from the UART. When possible, it is therefore better to batch many
tests by running them using one big test suite application to maximize coverage. Because all compilation has to
go through the compile host which has proven to add considerable time, batching tests using this approach can
also help to decrease the time of the code-compile-test cycle.

Another restriction regarding the use of a remote testbed lies in having no physical access to the motes. It
limits the choices available for debugging and testing to those who can be managed via the console. This can
especially be a problem for driver development, where access to the low-level details, such as provided by a
debugger or oscilloscope, can be essential. Having to use debug printing in order to trace the program flow can
be very time consuming and in some cases impossible due to the limited baud rate of the console UART

4.3 Testing TinyOS and nesC code
An important part of testing is to test as small a part of the system as possible at a time in order to have more
control of what is being tested[4]. For example, the core components of the system should be tested before testing
those that depend upon them, so that regressions are detected at the right level.

The programming model of TinyOS and nesC encourages heavy use of components to modularize the code.
This eases testing, since the code to some extent is already separated into small testable parts. However, for
complex components it may be necessary to decrease the test granularity and only test one interface at a time
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Identifier Description
%% ’%’ (percentage) symbol
%c 8-bit character
%d, %i 16-bit signed integer in decimal notation.
%ld, %li 32-bit signed integer in decimal notation.
%u 16-bit unsigned integer in decimal notation.
%lu 32-bit unsigned integer in decimal notation.
%x, %p 16-bit unsigned integer in hexadecimal notation.
%lx 32-bit unsigned integer in hexadecimal notation.
%s NUL terminated character string.
%.*s Length determined byte sequence.

Table 3: Printf-identifiers supported by the log interface.

rather than one component. Dividing up tests based on interfaces makes it possible to reuse the test suite for
testing different components providing the same interface and is preferable.

For some components it may be necessary to use stubs to further isolate them and have control over the
test environment[4]. This can be useful especially for complex component graphs, since it allows some of the
testing to be performed on a PC using a simulator, such as TOSSIM. The nesC language facilitates the use of
stubs very well by making it easy to wire in the stub component in place of the original one. One problem may
arise when the design principal of cross component optimization is in use, since it may be harder to isolate a specific
component. Because we have tried to keep each component simple, we have chosen not to use stubs but instead
test whole components using a bottom-up approach.

Testing timing constraints is as important as testing functional behavior for an embedded system[4]. This is
very hard given the available development environment since it can require that a certain amount of accuracy
can be ensured. However, for some components it is is good enough to be able to perform longer running tests,
e.g. to test timeouts. The test framework as presented above focuses on testing components separately in a
sequential manner in order to eliminate problems. It will therefore not be able to detect defects such as timing
errors that happen when all components are running and in use concurrently

Before describing the test suite and results we will first look at the developed logging and assertion interface.

4.4 Logging and assertions
The assignment framework contains a simple interface for printing debug strings. The Debug interface provided
by the ConsoleDebugM component together with the DBG_STR set of macros allows strings and integers to be
printed to the UART. Compared to printf it is not very flexible and mostly suited for light-weight low-level
debug printing. To have a more high-level interface available, a log component has been developed.

The primary interface provided by the log component is the Log interface, which gives easy access to printing
to the console using printf-like format strings. The format identifiers supported by the logging interface is a
trimmed down version of those supported by printf. They are listed in Table 3. All calls to the log module
are intended to be made using a set of macros. This slightly violates the TinyOS design by introducing global
identifiers, however it is also used by the dbg functionality in the TinyOS 1.x core, so it is deemed acceptable.
The main reason for using macros is to make it easy to disable all logging at compile-time without changing the
code. The following code gives an example how logging is used in the TestM component:

92 event void TestUnit . done [ uint8_t t e s t ] ( )
{

group_index++;
i f ( group_fa i led ) {

LOG_INFO2( "=> f a i l e d %u out of %u t e s t ( s ) \n" ,
97 group_fai led , test_number ) ;

} else {
LOG_INFO1( "=> passed a l l %u t e s t ( s ) \n" , test_number ) ;

}
post runTests ( ) ;

102 }
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Log level Description
DEBUG Debug and diagnostic messages
INFO Informational messages
WARN Warnings
ERROR Error reporting

Table 4: The log levels and their intended usage.

In the example, completion of a collection of tests is summarized using the LOG_INFO macros. Two things
are encoded in the name of the log macros: the log level and the number of format arguments being passed. Not
all platforms support variadic functions or macros, including the platform used in the DIKU Testbed. The main
problem is therefore to find a more portable way to handle a variable number of arguments. By making the
caller denote the number of arguments at the call site, logging is made a little less flexible compared to printf.
However, it has the advantage of making it possible to check during formatting that the number of passed
arguments corresponds to the number of format identifiers.

Since there is no va_list type available, arguments are passed to the log component via an array. All
argument are first casted to an uint32_t value and then casted back to their original type based on the format
identifiers. Using a 32-bit value ensures that most types and values available on the platform can be handled
correctly. To give an idea of the overhead involved with the logging interface, the following code snippet shows
how arguments are packed into an array before being handed over to the Log.put() command:

#define LOG_PUT3( l e v e l , fmt , arg1 , arg2 , arg3 ) \
{ \

35 u i n t 3 2 _ t argv [ 3 ] ; \
argv [ 0 ] = ( u i n t 3 2 _ t ) ( arg1 ) ; \
argv [ 1 ] = ( u i n t 3 2 _ t ) ( arg2 ) ; \
argv [ 2 ] = ( u i n t 3 2 _ t ) ( arg3 ) ; \
c a l l Log . put (LOG_LEVEL_## l e v e l , fmt , argv , 3 ) ; \

40 }

Using 32-bit types so extensively can be expensive on the 8-bit architecture of the motes in the DIKU Testbed.
If the accuracy of supporting 32-bit types is not required, it should be easy to downgrade logging to only handle
16-bit types. However, as already mentioned the logging interface is designed to be high-level.

Besides printing, the Log interface also has the notion of log levels for tagging the severity of log messages.
There are only 4 levels to keep it simple ranging from debug messages to error messages. The different log levels
and their intended usage are summarized in Table 4. The default log level can be changed at run-time which
will cause all log messages of less severity to be ignored. Although not something most application will make
use of, it can be essential to avoid concurrent access to the logging to clutter important message or to rate limit
the log messages, so that warning and error message which are not expected to be very frequent are ensured to
be visible by disabling debug and informational messages for a period of time.

Finally, the log component makes it possible to toggle whether each message being logged should be on
a separate line or are part of the same message. This is useful when values from an array or other scalar type
should be summarized via an iteration. It is used for implementing a simple test progress indicator in the TestM
component which displays a small animation. Since the indicator is only meant to be visible until the test result
has been determined, the cursor should not be advanced to the next line, since a future message is expected to
overwrite the progress string:

command void TestControl . t i c k ( )
{

c a l l Log . setLineBased (FALSE) ;
LOG_INFO2( "\r[%u ] %c " , test_number ,

59 t i c k s [ t e s t _ t i c k s ++ % ( s izeof ( t i c k s ) − 1) ] ) ;
c a l l Log . setLineBased (TRUE) ;
t e s t _ t i c k e d = TRUE ;

}

In addition to the Log interface, the log component also supports a simple Assert interface providing a
single command which should be called in case of an assertion failure. Assertions are a great way to embed

17



LogC

LogM
Log

Assert

ConsoleDebugM
Debug

ConsoleC

StdControl

ConsoleOutput

ConsoleOutput

Figure 6: The LogC component graph.

sanity checks in the code in order to achieve conditional logging in case of errors. Based on the evaluation of an
expression, a message detailing the expression and the position in the code (in the form of the file name and line
number) will be printed in case of failure. As for the log macros there is also defined an assert macro, which will
call the assertion failure command with the correct arguments:

#define a s s e r t ( expr ) \
i f ( ! ( expr ) ) { c a l l Assert . f a i l e d (# expr , __FILE__ , __LINE__ ) ; }

Logging and assertion handling is provided by the LogM module. All the actual formatting is handled by
the commands in the ConsoleOutput interface provided by ConsoleC. For environments where use of the
Log and Assert interfaces is mixed with use of the Debug interface a LogC component has been created. It
provides all the various console output interfaces: Debug, Log, and Assert.

4.5 The test framework
A test framework has been developed based on some of the above consideration. It has been the goal to provide
a simple and very flexible framework. The basic idea is to divide tests into a number of groups each focused
on testing a small part of the code, such as testing either a specific interface or all interfaces provided by a
component.

Each group of tests is expected to reside inside its own test module, which is required to provide the
TestUnit interface. This interface allows testing to be started via a run command and test completion to be
reported back to the main component of the test framework via a done event. Besides scheduling when test
groups are run, the test framework does not dictate how a test module should arrange and run its group of tests.
In other words, a test is handed over the control of the system and is free to manage its own level of concurrency.

For managing the individual tests performed by a test module a TestControl interface is provided, which
has commands for starting and ending tests as well as reporting progress for longer running tests. Below is an
example of its usage. It is taken from the TestConstantSensorM component of the TestSuite application.
Note that the TestControl interface has been aliased to Test to make the code less verbose:

task void t es tConstantValue ( )
{

c a l l Test . s t a r t ( " Reading constant value " , SUCCESS) ;
samplesLeft = c a l l NodeConfig . getSamples (NODECONFIG_A_ID) ;

44 c a l l Sensor . s t a r t P e r i o d i c (NODECONFIG_A_ID) ;
}

task void checkConstantValue ( )
{

49 c a l l Test . t i c k ( ) ;
a s s e r t ( sensorValue == 1) ;
samplesLeft−−;
i f ( samplesLeft == 0) {

c a l l Test . done (SUCCESS) ;
54 post testDone ( ) ;

}
}

event r e s u l t _ t Sensor . dataReady ( uint8_t data [ ] , uint8_t s ize , uint8_t
dataDescr iptor )

18

lib.LogC.nc.html
lib.LogM.nc.html
interfaces.Log.nc.html
interfaces.Log.nc.html
interfaces.Log.nc.html
interfaces.Assert.nc.html
interfaces.Assert.nc.html
interfaces.Assert.nc.html
tos.lib.ConsoleDebugM.nc.html
tos.interfaces.Debug.nc.html
tos.interfaces.Debug.nc.html
tos.interfaces.Debug.nc.html
tos.chips.hcs08.ConsoleC.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.StdControl.nc.html
tos.interfaces.ConsoleOutput.nc.html
tos.interfaces.ConsoleOutput.nc.html
tos.interfaces.ConsoleOutput.nc.html
tos.interfaces.ConsoleOutput.nc.html
tos.interfaces.ConsoleOutput.nc.html
tos.interfaces.ConsoleOutput.nc.html


59 {
a s s e r t (NODECONFIG_A_ID == dataDescr iptor ) ;
memcpy ( ( uint8_t ∗ ) &sensorValue , data , s i z e ) ;
post checkConstantValue ( ) ;
return SUCCESS;

64 }

It calls Test.start to initiate a test, which is expected to end successfully as indicated by the second
argument. A small test description is given, which in order to limit the amount of output will only be printed
in case of the test not ending with the expected result. The test starts periodically reading a number of samples
from the sensor keeping track of the number of read samples using a counter. All checks are made in the
checkConstantValue task which first calls Test.ticks to report progress, then checks that the new sensor
data has the expected value. Finally, it handles the test end condition, where Test.done is called with the test
result followed by the next test task being posted.

To simplify verification of return values, the test framework also provides the Assert interface. This allows
tests to avoid specifically tracking error conditions by simply using the assert() macro. If an assertion fails,
even one in a component indirectly being tested, the test framework will report the test as failed.

The test output is very minimalistic and will for successfully running tests print a minimum of information.
This ensures that it is easy to check the error log and locate failures. Each test group, as indicated by a call to
the group command of the TestControl interface, is reported in a separate section. For each test in the group,
the test number is reported and whether it failed or succeeded. Any intermediate progress reported will not be
visible in the final output.

In the following example, output from testing the SPI and Timestamp modules is shown. As can be seen
an assertion failure will both show the assertion message complete with file and line number as well a causing
the current test to fail. Each test group is summarized at the end.

Tes t ing TestSPIM
a s s e r t (PTED == 0 x04 ) f a i l e d at TestSPIM . nc : 4 2
[ 1 ] f a i l e d : PTE r e g i s t e r values
[ 2 ] ok
[ 3 ] ok
[ 4 ] ok
=> f a i l e d 1 out of 4 t e s t ( s )

Tes t ing TestTimestampM
[ 1 ] ok
[ 2 ] ok
=> passed a l l 2 t e s t ( s )

4.6 Test results
In the following, the results of all tests are summarized. Information about the test applications, such as compo-
nent graph and test output, can be found in Appendix A.

4.6.1 The test suite
The test framework described above is primarily used by the TestSuite application. The test suite has test mod-
ules dedicated to testing all the main components, including the TestM module itself. For example, the CacheM
module is tested by the TestCacheM module. The various test components and what they test for are summa-
rized in Table 5. The component graph of the TestSuite application can be seen in Figure 10 on page 30.

The output of running the TestSuite is available in Appendix A.4 on page 29. As can be seen all tests in the
test suite are passed successfully. We conclude that that modules covered by the test suite works correctly.

4.6.2 Logging
The TestLog application has been used for testing logging. Like all the tests apart from the TestSuite application,
it does not use the test framework presented above, since it is not possible to easily test text outputted to the
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Test suite
TestCacheM
Store Fill the cache and test that the messages are there
Delete Remove entries from the cache
Overwrite Recycle cache entries
GetDestination Test the lookup of destinations
GetGradien Test gradient lookup
TestConstantSensorM
ConstantValue Requests a number of samples, test that they give the expected value
TestNodeConfigM
IsSource Is the node correctly reported as source
IsSink Is the node correctly reported as sink
GetPeriod Are the sampling periods associated with data descriptors correctly reported
GetSamples Is the sample count associated with data descriptors correctly reported
TestNodeListM
Add Check if an added node exists even if others are added afterwards
Timeout Test that nodes are not reported as existing after a timeout
Full Can the node add more than the maximum number of nodes to the list
TestSPIM
SPIC1 Test that the SPIC1 register is setup as intended
SPIC2 Test that the SPIC2 register is setup as intended
SPIBR Test that the SPIBR register is setup as intended
TestTestM
Success Is success reported if a test was successful
Failure Is failure reported if a test failed
Assert Does a failed assert mark a test as failed
AssertFailure Is failure reported if there is a failed assert and a failure report
AssertMacroTrue Does a the assert macro trigger a failure if the expression passes true
AssertMacroFalse Is failed reported if an expression passes false
TestTimestampM
Incremental Test that periodical requests for a timestamp give increasing values
TimeDiff Test various differences between timestamps as reported by Timestamp.diff

Table 5: Test suite. Description of the different components in the TestSuite and their individual tests.

UART. Instead, it requires visual verification by the tester. The component graph of the TestLog application can
be seen in Figure 7 on page 24.

TestLog is divided into different test groups each devoted to one part, such as testing a specific printf iden-
tifiers. Each line denoted by => is a separate test. For most of the tests, the expected output is printed in the
start of the line, followed by a =, followed by the actually formatted output. However, some of the tests, such as
printing of the NUL char this is not the case. The output of the TestLog is available in Appendix A.1 on page 24
and is as expected.

4.6.3 SPI
Two applications have been used for testing the SPI driver. First, the TestSPIM module of the TestSuite
application tests that the 3 SPI control registers has the expected values. As can be seen, the TestSPIM section
of the TestSuite output available in Appendix A.4 on page 29 shows that the three SPI register tests all pass.
This confirms that the SPI driver correctly sets up the SPI hardware.

As for the correctness of SPI transmission, the TestRadio application has been used for testing. The compo-
nent graph of the TestRadio application is presented in Figure 8 on page 26. It is intended to be run on two or
more nodes in the testbed. Each node periodically sends a message with a sequence number and small payload
and prints information about messages received from neighboring nodes. The output of the TestRadio appli-
cation in Appendix A.2 on page 26 shows a test where node 5 is started first and is running for the entire test,
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and where node 8 is started after a little while and later stopped. The sequence numbers and message content
reported by both the sender and receiver shows that no messages are dropped and that the small payload is not
corrupted. A few “bad” messages are discarded because they do not have the correct value for certain message
fields. These messages have been quite normal throughout the project period and are caused by interference
with the WIFI at DIKU and messages from other groups using the testbed. The output of node 5 shows that one
corrupt message reported as packet number 1 from 65535 is not discarded. We believe this is caused by another
one of our test programs running on one of the motes in the testbed. In conclusion, the test output shows that
the SPI driver correctly communicates with the radio.

4.6.4 Publish/subscribe
When the time came to test our publish/subscribe system, we unfortunately ran into several difficulties. To
compile to the architecture used on the DIKU Testbed motes we use a centralized server with the only complier
license. This server has been inaccessible for approximately one third of the time we have worked on the project,
including most of the last week before the deadline. To further complicate things, the DIKU Testbed itself has
had problems. Many of the motes in the testbed have worked erratically or not at all throughout the assignment
period. This has left us with as few as four usable motes to be shared among all the students working on the
course. Sadly, this has been quite problematic for our testing and iterative development, only leaving time to get
a basic version of our directed diffusion system running, and not allowing it to be tested as thoroughly as we
wanted.

To test the routing of interests and data, we set up several test cases. First, a very simple situation with only
two nodes, a source and a sink. The sink periodically sends out interests, and displays any data received back.
The source responds to any subscriptions by returning data. After verifying that it worked correctly we added
code to test multi-hop routing. To test this we made the TestDirectD application depicted in Figure 9 on page
27. It assumes a network with three nodes: a source, a sink and an extra node are used. As before the source
wants data from the sink, but this time, they are not in communication range of each other. This means that it
will have to be routed via the third node. To test this we had to force the sink and source to discard messages
received directly from the other due to the fact that all the nodes are located within communication range.

The output from the TestDirectD application in appendix A.3 on page 27 shows three nodes, node 4
acting as sink, node 5 as source and node 7 as the node that forwards between node 4 and 5. Node 7, node
5 and then node 4 was started making sure that the source was up and running before the sink subscribed
to its data. The output shows that the sink subscribes to the source and the source receives this subscription
through the forwarding node. It is worth mentioning that "message ignored" is logged each time the source
or the sink receives a message directly from each other. After successfull subscription the source sends sensor
data through the forwarding node to the sink. Somehow the last sensor reading is not received by the sink even
though the forwarding node claims it has forwarded it. We have not been able to test where the error is due
to time constraints. After subscription timeout the sink subscribes again and the output shows a similar result.
However, even with this problem we think it is reasonable to conclude that our publish/subscribe system works
correctly.
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5 Conclusion
Our assignment has been to create an SPI driver, implement a publish/subscribe system, and document how we
tested these.

Developing the SPI driver has given us a hands-on experience of working with the hardware, compared
to the higher-level programming of the rest of the assignment. This has given us an important perspective on
embedded programming. After testing and verifying it with the data-sheet, we conclude that it implements the
driver specification correctly.

We designed and implemented a limited directed diffusion system for use with publish/subscribe. Due to
the difficulties with the testbed and compile host, we were unable to get this to work as well and with as many
features as we had hoped. However, we still feel that the system we did develop is a good foundation for further
work, and shows the data-centric and topology robustness of directed diffusion.

To help with testing we developed a more advanced logging framework that the existing one. This has
enabled us to document how we tested the two other parts of the assignment. It has made us confident that the
various parts of our implementation works correctly, and shows the importance of unit testing.

Focusing on simplicity, our approach of using small individually testable components to make up a larger
whole, has proven a good method for iterative development. In conclusion we feel that despite the difficulties
we have encountered, we did end up with a decent finished version of our designs.
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A Test applications

A.1 TestLog

Main

TestLogMStdControl

ConsoleCStdControl
LogM

Log ConsoleOutput

Figure 7: The TestLog component graph

Output from the TestLog application.

Ã¿est ing l i n e based logging
=> mul t ip le s t r i n g s on one l i n e

Tes t ing log l e v e l s
=> debug i n f o warn e r r o r = debug i n f o warn e r r o r
=> i n f o warn e r r o r = i n f o warn e r r o r
=> warn e r r o r = warn e r r o r
=> e r r o r = e r r o r

Tes t ing LOG_DEBUG
=> a = a
=> ab = ab
=> abc = abc
=> abcd = abcd

Tes t ing LOG_INFO
=> a = a
=> ab = ab
=> abc = abc
=> abcd = abcd

Tes t ing LOG_WARN
=> a = a
=> ab = ab
=> abc = abc
=> abcd = abcd

Tes t ing LOG_ERROR
=> a = a
=> ab = ab
=> abc = abc
=> abcd = abcd

Tes t ing percent escaping
=> %, %, and l o t s of %, %, and %

Test ing %c
=> ’A’ == ’A’
=> ’\0 ’ == ’ ’

Tes t ing %d
=> 0 == 0
=> −1 == −1
=> 12345 == 12345

Tes t ing %ld
=> 0 == 0
=> −1 == −1
=> 123456 == 123456

Tes t ing %i
=> 25 == 25

Tes t ing %l i
=> −123456 == −123456

Tes t ing %u
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=> 42 == 42
=> s i z e o f ( char ) = 1
=> s i z e o f ( char ∗ ) = 2
=> s i z e o f ( shor t i n t ) i s 2
=> s i z e o f ( i n t ) = 2
=> s i z e o f ( long ) = 4
=> BIGWORD == 65535

Tes t ing %lu
=> 123456 == 123456
=> 1234567 == 1234567
=> 12345678 == 12345678
=> BIGLONG == 4294967295

Tes t ing %x
=> 0 x0010 == 0 x0010
=> 0 x1024 == 0 x1024

Tes t ing %l x
=> 0 x00010000 == 0 x00010000
=> 0 x11223344 == 0 x11223344
=> s t r i n g s == 0 x00003497

Tes t ing %p
=> NULL == 0 x0000
=> 0 x0010 == 0 x0010
=> s t r i n g s == 0 x3497

Tes t ing %s
=> ( nul l ) = ( nul l )
=> s t r i n g s = s t r i n g s
=> s t a t i c s t r i n g = s t a t i c s t r i n g
=> a b = a b
=> a b c = a b c
=> a b c d = a b c d

Tes t ing %.∗ s
=> ( nul l ) = ( nul l )
=> ’ ’ = ’ ’
=> s t r = s t r
=> s t r i n g = s t r i n g s

Tes t ing complete .
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A.2 TestRadio

Main

mc13192TOSRadioC

StdControl

TestRadioM
StdControl

TimerC
StdControl

HPLSPIM
StdControl

LogC

StdControl

FastSPI
Debug

ReceiveMsg

BareSendMsg

Timer
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mc13192Control

Debug
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Figure 8: The TestRadio component graph

Node 5 Node 8

t a r t i n g TestRadio .
Packet #0 sent
Packet #1 sent
Packet #2 sent
Packet #3 sent
Packet #4 sent
Packet #5 sent
Packet #0 from 8 [ NEP06_07 ]
Bad message
Packet #6 sent
Packet #1 from 8 [ NEP06_07 ]
Packet #7 sent
Packet #2 from 8 [ NEP06_07 ]
Packet #8 sent
Packet #3 from 8 [ NEP06_07 ]
Packet #9 sent
Packet #4 from 8 [ NEP06_07 ]
Packet #10 sent
Packet #5 from 8 [ NEP06_07 ]
Packet #1 from 65535 [ ]
Packet #6 from 8 [ NEP06_07 ]
Packet #11 sent
Packet #7 from 8 [ NEP06_07 ]
Packet #12 sent
Packet #8 from 8 [ NEP06_07 ]
Packet #13 sent
Packet #9 from 8 [ NEP06_07 ]
Packet #14 sent
Packet #10 from 8 [ NEP06_07 ]
Packet #15 sent
Packet #11 from 8 [ NEP06_07 ]
Packet #16 sent
Packet #12 from 8 [ NEP06_07 ]
Packet #17 sent
Packet #18 sent
Packet #19 sent

t a r t i n g TestRadio .
Packet #5 from 5 [ NEP06_07 ]
Packet #0 sent
Bad message
Bad message
Packet #6 from 5 [ NEP06_07 ]
Packet #1 sent
Packet #7 from 5 [ NEP06_07 ]
Packet #2 sent
Packet #8 from 5 [ NEP06_07 ]
Packet #3 sent
Bad message
Packet #9 from 5 [ NEP06_07 ]
Packet #4 sent
Bad message
Packet #10 from 5 [ NEP06_07 ]
Packet #5 sent
Bad message
Packet #6 sent
Packet #11 from 5 [ NEP06_07 ]
Packet #7 sent
Packet #12 from 5 [ NEP06_07 ]
Packet #8 sent
Packet #13 from 5 [ NEP06_07 ]
Packet #9 sent
Packet #14 from 5 [ NEP06_07 ]
Packet #10 sent
Packet #15 from 5 [ NEP06_07 ]
Packet #11 sent
Packet #16 from 5 [ NEP06_07 ]
Packet #12 sent
Packet #17 from 5 [ NEP06_07 ]
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A.3 TestDirectD
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Figure 9: The TestDirectD component graph
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Node 4 - Sink Node 5 - Source Node 7 - Forward

t a r t i n g TestDirectD .
Subscr ib ing to 0
message not forwarded
message ignored
Subscr ipt ion 0 returned : 1
message ignored
Subscr ipt ion 0 returned : 1
message ignored
Subscr ipt ion 0 returned : 1
message ignored
Subscr ipt ion 0 returned : 1
message ignored
Subscr ipt ion 0 returned : 1
message ignored
Subscr ipt ion 0 returned : 1
message ignored
Subscr ipt ion 0 returned : 1
message ignored
Subscr ipt ion 0 returned : 1
message ignored
Subscr ipt ion 0 returned : 1
message ignored
Subscr ib ing to 0
message ignored
Subscr ipt ion 0 returned : 1
message ignored
Subscr ipt ion 0 returned : 1
message ignored
Subscr ipt ion 0 returned : 1
message ignored
Subscr ipt ion 0 returned : 1
message ignored
Subscr ipt ion 0 returned : 1
message ignored
Subscr ipt ion 0 returned : 1
message ignored
Subscr ipt ion 0 returned : 1
message ignored
Subscr ipt ion 0 returned : 1
message ignored
Subscr ipt ion 0 returned : 1
message ignored

t a r t i n g TestDirectD .
message ignored
S t a r t i n g sensor f o r 0
Sending data
Sending data
Sending data
Sending data
Sending data
Sending data
Sending data
Sending data
Sending data
Sending data
message ignored
S t a r t i n g sensor f o r 0
Sending data
Sending data
Sending data
Sending data
Sending data
Sending data
Sending data
Sending data
Sending data
Sending data

t a r t i n g TestDirectD .
forwarding i n t e r e s t
forwarding data
forwarding data
forwarding data
forwarding data
forwarding data
forwarding data
forwarding data
forwarding data
forwarding data
forwarding data
forwarding i n t e r e s t
forwarding data
forwarding data
forwarding data
forwarding data
forwarding data
forwarding data
forwarding data
forwarding data
forwarding data
forwarding data
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A.4 TestSuite
Output from the TestSuite application.

ÿes t ing TestTestM
[ 1 ] ok
[ 2 ] ok
[ 3 ] ok
a s s e r t ( as expected ) f a i l e d at TestTestM . nc : 7 7
[ 4 ] ok
a s s e r t ( as expected ) f a i l e d at TestTestM . nc : 9 0
[ 5 ] ok
[ 6 ] ok
a s s e r t (FALSE) f a i l e d at TestTestM . nc : 1 1 6
[ 7 ] ok
=> passed a l l 7 t e s t ( s )

Tes t ing TestSPIM
[ 1 ] ok
[ 2 ] ok
[ 3 ] ok
=> passed a l l 3 t e s t ( s )

Tes t ing TestTimestampM
[ 1 ] ok
[ 2 ] ok
=> passed a l l 2 t e s t ( s )

Tes t ing TestCacheM
[ 1 ] ok
[ 2 ] ok
[ 3 ] ok
[ 4 ] ok
[ 5 ] ok
=> passed a l l 5 t e s t ( s )

Tes t ing TestNodeListM
[ 1 ] ok
[ 2 ] ok
NodeList f u l l !
[ 3 ] ok
=> passed a l l 3 t e s t ( s )

Tes t ing TestNodeConfigM
[ 1 ] ok
[ 2 ] ok
[ 3 ] ok
[ 4 ] ok
=> passed a l l 4 t e s t ( s )

Tes t ing TestConstantSensorM
[ 1 ] ok
=> passed a l l 1 t e s t ( s )

Tes t ing complete .
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